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Abstract

The complexity of the solid oxide fuel cell requires the use of very large computers. For this reason, models based on various engineering
assumptions have been created so that the numerical calculations may be performed on small personal computers.

The Hammerstein models are special kinds of nonlinear systems where the nonlinear block is static and is followed by a linear system.
This method is applied to model the static and dynamic characteristics of the solid oxide fuel cell.
©

K

1

i
t
p
t
m

s
d
b
c
p
c
i
s
a
t
t

sig-
em
r-
n of

near
wed

any
am-
many
in the
ons.
tion
tive

res
rity
mes

Ref.
iple

0
d

2005 Elsevier B.V. All rights reserved.

eywords: Hammerstein systems; Nonlinear systems; Parameter estimation; Solid oxide fuel cells; System identification

. Introduction

The solid oxide fuel cell (SOFC) is viable for generat-
ng electricity from hydrocarbon fuels. The high operating
emperature from 600–1000◦C allows internal reforming and
romotes rapid kinetics with nonprecious materials. The high

emperature of the SOFC, however, places stringent require-
ents on its materials.
Padulĺes et al.[1] develop a SOFC model which includes

pecies dynamics, but it does not consider temperature
ynamics. Hall and Colclaser[2] modeled a 3-kW SOFC
ut they did not take into account dynamics of the chemi-
al species. Achenbach develops a mathematical model of a
lanar SOFC, which concentrates on effects of temperature
hanges on output voltage response[3]. Temperature dynam-
cs is modeled in a three-dimensional (3D) vector space. The
ame author investigated the transient behavior of a stand-
lone SOFC caused by a load change in Ref.[4]. It shows

hat the relaxation time of the output voltage is highly related
o the effect of temperature dynamics.

The application of the autoregression with exogenous
nal (ARX) identification algorithm to compute linear syst
models is presented in Ref.[5]. In this paper, the Hamme
stein nonlinear system approach is used for identificatio
the nonlinear system model of SOFC.

The Hammerstein models are special kinds of nonli
systems where the nonlinear block is static and is follo
by a linear system. These models have applications in m
engineering problems, and therefore, identification of H
merstein models has been an active research area for
years. There exist a large number of research papers
literature on the topics of Hammerstein model identificati

Existing methods for Hammerstein model identifica
can be roughly divided into four categories: the itera
method[6,7], the over-parametrization method[8–11], the
stochastic method[12–14] and the separable least-squa
method[15]. In most cases, the structure of the nonlinea
is assumed to be known. Otherwise, identification beco
a structural estimation problem[16].

Due also to the particular parameterization used in
[8], an extension of the results to the multiple input, mult
∗ Tel.: +34 953 648518; fax: +34 953 648508.
E-mail address: fjurado@ujaen.es.

output (MIMO) setting does not seem to be straightforward.
Gomez and Baeyens[17] proposed a noniterative algorithm
for the identification of Hammerstein models, which, in
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Nomenclature

Cs
p heat capacity of the cell unit (J (kg K)−1)

Eo standard reversible cell potential (V)
F Faraday’s constant (C kmol−1)
h̄in

ai , h̄
in
ci anode (cathode) inlet partial molar enthalpies

(J mol−1)
h̄s

i partial molar enthalpies at stack temperature
(J mol−1)

i stack current density (A m−2)
iL limiting current density (A m−2)
i0 exchange current density (A m−2)
I stack current (A)
Ki valve molar constants
Kr constant dependent on Faraday’s constant

and number of electrons in the reaction
(kmol (s A)−1)

Ms mass of the cell unit (kg)
n number of electrons participating in the reac-

tion
NH2 hydrogen flow that reacts (kmol s−1)
N in

i , No
i molar flow rates (mol s−1) of the ith reactant

at the cell input and output, respectively
Nr

i reaction rate (mol s−1) of theith reactant
No number of cells in stack
N in

ta, N in
tc anode (cathode) total inlet molar flow

(mol s−1)
p cell pressure (atm)
Pdc stack dc power (W)
r ohmic resistance (� m2)
R gas constant (8.31 J (mol K)−1)
Rai, Rci anode (cathode) total rate of production of

species (mol s−1)
Ts stack solid average temperature (K)
T0 temperature constant (K)
V compartment volume (m3)
Vdc cell voltage (V)
Ve volume of the cell unit (m3)
Vo open-circuit reversible potential (V)
xin

ai, x
in
ci anode (cathode) inlet mole fractions

xi mole fractions of species

Greek letters
α electron transfer coefficient of the reaction at

the electrode
αr, βr ohmic resistance constants
ηact activation losses (V)
ηcon concentration losses (V)
τH2 time constant associated with the hydrogen

flow and is a function of temperature (s)
ξ total gas components in anode or cathode

contrast to[8], applies also to multivariable systems, allows
a more general representation (using base functions) for the
static nonlinearity, and where the consistency of the estimates
is guaranteed even in the presence of colored output noise.
As in Ref.[8], the main computational tools employed by the
algorithm are least-squares estimation (LSE) and singular
value decomposition (SVD), which results in numerical
robustness under weak assumptions on the persistency of
excitation of the inputs. Key on the derivations of the results
in Ref.[17] is the use of base functions for the representation
of the linear and the nonlinear blocks in the Hammerstein
model.

The paper is organized as follows. In Section2, general
principles of SOFC are explained. The multivariable Ham-
merstein model is introduced and the identification problem
is formulated in Section3. Simulation examples illustrat-
ing the performance of the algorithms on SOFCs are pre-
sented in Section4, and finally, conclusions are provided in
Section5.

2. Solid oxide fuel cell dynamic model

The proposed stack model is based on the following
assumptions:
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1) Stack is fed with hydrogen and air, therefore, the
processor dynamics is not included.

2) A uniform gas distribution among cells is assumed, s
there is a small deviation of the gas distribution am
the cells.

3) There is no heat transfer among cells. Each cell ha
same temperature and current density[1].

4) The channels that transport gases along the elect
have a fixed volume, but their lengths are small, so
it is only necessary to define one single pressure val
their interior. The ratio of pressures between the inte
and exterior of the channel is large enough to cons
that orifice is choked[1,18].

Fig. 1shows the dynamic model of SOFC, along with
ajor chemical reactions.

.1. Electrochemical model

The change in concentration of each specie that ap
n the chemical reactions can be written in terms of in
nd output flow rates and exit molarity due to the follow
hemical reaction[19,20]:

V

RT

d

dt
pi = N in

i − No
i − Nr

i (1)

n agreement with the basic electrochemical relations
he molar flow that reacts can be calculated as:

r
i = NoI

2F
= 2KrI (2)
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Fig. 1. Dynamic model of SOFC.

The cell utilization is defined through the input and output
hydrogen flow rates as follows:

u = N in
H2

− No
H2

N in
H2

(3)

For orifice that is choked[18], molar flow of any gas through
the valve is proportional to its partial pressure inside the chan-
nel according to the following expressions[1]:

NH2

pH2

= KH2,
NH2O

pH2O
= KH2O (4)

Considering the hydrogen partial pressure,

V

RT

d

dt
pH2 = N in

H2
− No

H2
− 2KrI (5)

Applying the Laplace transformation to the above equations
and isolating the hydrogen partial pressure, yields the follow-
ing expressions:

pH2 =
1

KH2

1 + τH2s
(N in

H2
− 2KrI) (6)

τH2 = V

KH2RT
(7)

2

m-
p unit
g it or
o yers
a ll uni
[

The energy balance equation for each cell unit is as fol-
lows:

MsCs
p
dT s

dt
= N in

ta


 ξ∑

i=1

xin
ai(h̄

in
ai − h̄s

i )


−

ξ∑
i=1

h̄s
iRai

+N in
tc


 ξ∑

i=1

xin
ci(h̄

in
ci − h̄s

i )


−

ξ∑
i=1

h̄s
iRci − Pdc

(8)

Under the ideal gas supposition, the partial molar enthalpies
are calculated using

h̄i = h̄ref
i +

∫ T

Tref

cp,i(u) du (9)

and coefficients of the specific heatscp,i,

cp,i = ai + biT + ciT
2 + diT

3 (10)

are encountered in standard reference tables. The reference
enthalpy stands for energy at standard reference temperature
and considers the heat of formation for each gas species to
account for energy change on chemical reaction.

2

to
a , the
s ge is
r

V

.2. Thermal model

The fuel cell power output is closely related to the te
erature of the cell unit. The heat storage in the thin fuel
as or oxidant gas layer is neglected. The thin fuel un
xidant gas layers are lumped to the cell unit and gas la
re assumed to have the same temperature as the ce

2–4].

t

.3. Nernst’s equation

Applying Nernst’s equation and Ohm’s law (taking in
ccount ohmic, concentration, and activation losses)
tack is connected in series and the stack output volta
epresented as follows[19–21]:

dc = Vo − rI − ηact − ηcon (11)
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Vo = No

(
Eo + RT

2F

[
ln

xH2x
0.5
O2

xH2O

])
(12)

For the reason that the reactant is consumed at the elec-
trode by electrochemical reaction, there is a loss of potential
due to the inability of the surrounding material to maintain
the initial concentration of the bulk fluid. Concentration loss
equation is given by[2,19–21]:

ηcon = RT

nF
ln

(
1 − i

iL

)
(13)

Activation polarization is existent when the rate of an elec-
trochemical reaction at an electrode surface is controlled by
sluggish electrode kinetics[20,21]. Activation loss equation
is as follows:

ηact = RT

αnF
ln

(
i

i0

)
(14)

α is the transfer coefficient, which is considered to be the
fraction of the change in polarization that leads to a change
in the reaction rate constant and its value is usually 0.5 for
the fuel cell application.

Tafel plots provide a visual understanding of the activa-
tion polarization of a fuel cell. They are used to measure the
exchange current density, given by the extrapolated intercept
a that
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Fig. 2. Multivariable Hammerstein model.

The input–output relationship is then given by

yk = G(q)N(uk) + vk (17)

whereyk ∈ R
m, uk ∈ R

n, andvk ∈ R
m are the system output,

input, and measurement noise vectors at timek, respectively.
It will be assumed that the nonlinear block can be specified
as

N(uk) =
r∑

i=1

aigi(uk) (18)

where gi(.) = R
n → R

n(i = 1, . . . , r) are known nonlin-
ear base functions andai ∈ R

n×n(i = 1, . . . , r) are unknown
matrix parameters. Typically, the nonlinear functionsgi(.)
are polynomials that allow the representation of smooth non-
linearities, but they can also be radial base functions (RBF)
or base functions generated by translations and dilations of
a mother function (e.g., wavelets). Any smooth function in
an interval can be represented with arbitrary accuracy by a
polynomial of sufficiently high order.

From another point of view, the LTI system will be repre-
sented using rational orthonormal bases as follows:

G(q) =
p−1∑
l=0

blBl(q) (19)

w nd
{

wn
p
( lin-
e
o

3

t
r

y

u ness
i ,
a n,
t

θ

t ηact= 0 which is a measure of the maximum current
an be extracted at negligible polarization, and the tra
oefficient (from the slope).

The usual form of the Tafel equation that can be ea
xpressed by a Tafel plot is

act = a + b ln i (15)

herea = (−RT/αNF) ln i0 andb = RT/αNF.
The termb is called the Tafel slope and is obtained fr

he slope of a plot ofηact as a function of lni. The Tafel slop
or an electrochemical reaction is about 110 mV/decad
oom temperature.

Ohmic losses occur because of resistance to the flo
ons in the electrolyte and resistance to the flow of elect
hrough the electrode materials. This resistance is depe
n the cell temperature and is obtained by Ref.[21]

= αr exp

[
βr

(
1

T 0 − 1

T

)]
. (16)

. Hammerstein model identification

.1. Problem formulation

A multivariable Hammerstein model is symbolized
ig. 2. The model consists of a zero-memory nonlinear
entN(.) in cascade with a linear time invariant (LTI) syst
ith transfer function matrixG(q) ∈ Hm×n

2 (T). It is accepte
hat the measured outputyk contains an unknown additi
oise componentvk.
t

here bl ∈ R
m×n are unknown matrix parameters a

Bl(q)}∞l=0 are rational orthonormal bases.
The identification problem is to estimate the unkno

arameter matricesai ∈ R
n×n(i = 1, . . . , r) and bl ∈ R

m×n

l = 0, . . . , p − 1) characterizing the nonlinear and the
ar parts, respectively, from anN-point data set{uk, yk}Nk=1
f observed input–output measurements.

.2. Identification algorithm

Substituting Eqs.(18) and(19) in (17), the input–outpu
elationship can be written as

k =
p−1∑
l=0

r∑
i=1

blaiBl(q)gi(uk) + vk (20)

From Eq.(20), the parametrization(18) and(19) is not
nique. A technique that can be used to obtain unique

s to normalize the parameter matricesai or bl, for example
ssuming that||ai||2 = 1 or||bl||2 = 1. Under this assumptio

he parametrization is unique.
Specifying now

� [b0a1, . . . , b0ar, . . . , bp−1a1, . . . , bp−1ar]
T (21)
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φk �



B0 (q) gT

1(uk), . . . ,Bp−1 (q) gT
r (uk) . . . ,

...

Bp−1 (q) gT
1(uk), . . . ,Bp−1 (q) gT

r (uk) . . . ,




T

(22)

Eq.(20)can be written as

yk = θTϕk + vk (23)

which is in linear regression form. Regarding theN-point data
set, the last equation, and defining

YN � [y1, y2, . . . , yN ]T (24)

VN � [v1, v2, . . . , vN ]T (25)

ΦN � [φ1, φ2, . . . , φN ]T (26)

the next equation can be written

YN = ΦT
Nθ + VN (27)

The estimatêθ that minimizes a quadratic criterion on the
prediction errorsεN = YN − ΦT

Nθ is determined by

θ̂ T

T s
(
(

θ

w by
s d

whereΘab has been defined as

Θab �




aT
1bT

0 aT
1bT

1 . . . aT
1bT

p−1

aT
2bT

0 aT
2bT

1 . . . aT
2bT

p−1

...
... . . .

...

aT
r bT

0 aT
r bT

1 . . . aT
r bT

p−1


 (30)

whereΘab = abT and the following definitions for the matri-
cesa andb,

a� [a1, a2, . . . , ar]
T (31)

b� [bT
0, bT

1, . . . , bT
p−1]

T
(32)

An estimateΘ̂áb of the matrixΘáb can then be obtained
from the estimatêθ in (28). The question now is how to esti-
mate the parameter matricesa andb from the estimatêΘáb. It
is clear that the closest estimates ˆa andb̂ are those that solve
the following optimization problem

(â, b̂) = arg min
a,b

{
||Θ̂a,b − abT||22

}
(33)

T the
S

in
m hose
i se
f the
H tein
m

ivalent
= ΦNYN (28)

he problem is how to calculate the parameter matriceai

i = 1, . . ., r) andbl (l = 0, . . ., p − 1) from the estimatêθ in
28). From

= blockvec(Θab) (29)

here blocvec(Θab) is the block column matrix obtained
tacking the block columns ofΘab on top of each other, an

Fig. 3. Equ
he solution to this optimization problem is supplied by
VD of the matrixΘ̂áb.
The structure(17)–(19) of the identified Hammerste

odel can be interpreted as an equivalent LTI model w
nputs are the actual inputsuk filtered by the nonlinear ba
unctionsgi(.) used to represent the static nonlinearity in
ammerstein model. This interpretation of the Hammers
odel is represented in the block-diagram ofFig. 3.

LTI model.
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Table 1
Operating point data

Power (kW) 100
Stack voltage (V) 286.3
Stack current (A) 300
Number of cells 384
Number of stacks 1
Open circuit voltage for each cell (V) 0.935
Input fuel flow (kmol s−1) 1.2× 10−3

Input air flow (kmol s−1) 2.4× 10−3

Cell area (cm2) 1000
Cell temperature (◦C) 1000
Transfer coefficient� 0.5
Ohmic resistance constantβr −2870
Ohmic resistance constantαr 0.2
Temperature constantT0 (K) 923
Limiting current (A m−2) 0.8
KH2 (kmol (atm s)−1) 8.43× 10−4

4. Results

The identification algorithm is used to estimate a Ham-
merstein model based on simulation data of a SOFC. The
white-box model consists of a set of coupled equations, as
established in Section2.

The inputs to the system are the temperature input (u1),
the fuel flow (u2), the air flow (u3), and the current (u4). The
outputs of the system are the temperature output (y1) and the
voltage (y2).

The linear subsystem in the Hammerstein model was rep-
resented using the rational orthonormal bases with fixed poles
studied in Refs.[17,22]

Bi(q) =
(√

1 − |ξl|2
q − ξl

)
l−1∏
i=0

(
1 − ξ̄iq

q − ξi

)
, l ≥ 1 (34)

B0(q) =
(√

1 − |ξ0|2
q − ξ0

)
(35)

where (ξ0, ξ1, . . ., ξp−1) are the poles of the bases.
In order to determine the model order of the linear sub-

system, as well as initial guesses for the location of the
poles of the bases, the same input–output data were used
to identify a linear model of the process using a sub-
s with
M ar
m rder
m stein
m

sed
t stein
m s a
c rror,
a ike’s
I

sid-
e

Fig. 4. Output stack voltage response due to stack current step increase.

purposes of identification, the white-box model of the SOFC
was excited with band-limited white noise around the nomi-
nal value of the fuel flow (u2), while all the other inputs were
kept constant in their nominal values. Changes in the fuel
flow were produced every 40 s, with a maximum amplitude
of ±100% of the nominal value. A set of 10,000 data was
collected from the simulation with a sampling time of 0.1 s.
The first 5000 data were used for the estimation of a Ham-
merstein model of the fuel cell, while the remaining 5000
data were used for validation purposes.

The true (Full model) and estimated (Hammerstein model)
outputs are represented inFigs. 4–6. A step change in the
stack current (from 300 to 400 A) is applied. The true (solid
line) and estimated (dashed line) output voltages correspond-
ing to the identified model are represented inFig. 4.

Fig. 5 represents the cell temperature due to this step
change in the stack current.

Finally, the voltage step response of the SOFC due to the
change in fuel flow input from 1.2 to 1.5 kmol s−1 is depicted
in Fig. 6.

F crease.
pace method. System Identification Toolbox for use
atlab [23] was used for the identification of the line
odel. As a result of the identification process a fourth-o
odel was estimated as the linear part of the Hammer
odel.
On the other hand, a third-order polynomial was u

o represent the nonlinear static block of the Hammer
odel. This choice for the order of the polynomial wa

ompromise between model complexity and variance e
nd the decision was taken based on the values of Aka

nformation Theoretic Criterion (AIC).
The nominal operating conditions of the SOFC con

red in this example are given inTable 1 [24,25]. For the
 ig. 5. Output stack temperature response due to stack current step in
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Fig. 6. Output voltage response due to fuel flow step change.

5. Conclusions

This paper develops a multivariable Hammerstein model
of a SOFC, which can be applied for small signal and tran-
sient stability studies. The model based on electrochemical
and thermal equations describes temperature dynamics and
output voltage losses.

Noniterative algorithms for the identification of this
multivariable Hammerstein system have been presented.
The key issue in the derivation of the results is the
representation of the system using base functions. The
suitability of the proposed methods for their use in
the identification of SOFCs has been illustrated through
simulation.
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